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What is Artificial‘
Intelligence (Al)

“Ability of a computer or computer-controlled robot to
perform tasks commonly associated with intelligent beings”
(Encyclopedia Britannica)

In precision medicine: the use of computer algorithms (often

using machine learning) and workflows to learn how to predict
a future state, e.g., disease risk, outcome, optimal therapy, etc.
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Prognostic and Predictive
Biomarkers

Predictions: use data at (or up to) one point in time to
estimate the likely state of the system at some future time

Biomarkers: usually identified at the population level and used
to predict an individual’s disease risk or other outcome (future
state) relative to the population

Prognostic biomarkers: personalized prediction of future
disease state

Predictive biomarkers: personalized prediction of the
intervention(s) that will produce the optimal clinical outcome
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Prediction and Precision

Prediction: estimate (often expressed as a probability
and/or summary statistic) of the future risk of an
individual developing a disease, a specific clinical
outcome for a patient (e.g., within a specified period of
time), the optimal intervention for a patient, a
molecular target for therapy, etc.

Precision: degree of sensitivity (true positives) and
specificity (true negatives) of a prediction algorithm
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Data Sources for Precision
Medicine

 Case history, disease status, etc.

« Specimen histopathology

- Validated individual biomarkers, e.g., HER2 (breast cancer)
 Validated complex biomarkers, e.g., PAM50 (breast cancer)

* Omics data for biomarker discovery/validation and target

discovery for drug discovery/repurposing
— Often genome, transcriptome, proteome data from patient samples
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Data Sources: Heterogeneity

Intra-tumoral Heterogeneity Inter-tumoral Heterogeneity

Temporal Heterogeneity

Spatial Heterogeneity

Patient Data Heterogeneity
e Age
e®Socio-economics
eRace/ethnicity
eComorbidities
e Treatment(s)

oEtc. /
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Data Sources: Heterogeneity

Sampling Bias
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Sampling bias can affect the representation of
tissue features

eGenetic or epigenetic heterogeneity (e.g., mutations, DNA methylation)
eMolecular heterogeneity (e.g., proteins, metabolites)

eCellular heterogeneity (e.g., stromal, tumor, immune cells)

eDrug and nutrient perfusion heterogeneity

eDrug response heterogeneity




Addressing Heterogeneity
Data deconvolution (e.g., genetic, molecular, cellular heterogeneity)

® Supervised tools (several)
— Deconvolution is supervised by external data
— Knowledge of the number of cell types present, e.g., histopathology
— Data for adequate supervision is often unavailable

e Unsupervised tools (few)
— Deconvolution is done without reference to any external data
— Required where data for algorithm supervision is unavailable

® Alternative: tissue microdissection and single cell sequencing
— Currently limited transcriptome coverage (misses 50-75% of the
transcriptome)
— Lower coverage for the proteome and metabolome
— Sampling bias (how many single cells capture the heterogeneity)




Data Properties:
Dimensionality

Epidemiology Transcriptome Assay
— 10,000 subjects — 10,000 mRNAs in single cell RNAseq study
— Questionnaire with 100 questions — 100 specimens
— 100-dimensional data with 10,000 — 10,000-dimensional data with 100
samples samples

How well do we sample what’s really present?
— ~30,000 genes
— ~50,000 RNA transcripts (all types)
— perhaps 80,000-400,000 different proteins
— >110,00 metabolites (HMDB 4.0)
— Likely many protein-protein, protein-metabolite,
protein-DNA, and protein-RNA connections
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Data Properties:
Dimensionality

e Concentration of measure
— Data are not evenly distributed in high dimensional data spaces

® Curse of dimensionality
— Large search radius, number of calculations increase exponentially with
dimensionality, algorithms allocate resources to irrelevant data regions,
algorithms may converge on local solutions that are globally incorrect

e Multimodality (in biological systems)
— More than one process, pathway, or phenotype is present
— Asignaling feature (e.g., gene, signaling module) may affect more than
one component of a complex phenotype

e Confound of multimodality (complex phenotype)
— Which component(s) of the profile uniquely define the phenotype of
interest (e.g., biomarker study)
— Which omics feature(s) truly reflect which phenotype component (e.g.,

mechanistic study to find new drug target) /
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Addressing Dimensiona ity

e Visualization
— Examine all data by multidimensional scaling (e.g., PCA)
— Validate retention of data structure after dimension reduction

e Reduce dimensionality to
— Eliminate redundancy or uninformative data
— Reduce noise
— Ease the curse of dimensionality
— Improve algorithm performance

e Reduce dimensionality by
— Removing features (e.g., genes) lacking variable expression
— Removing features not associated with a surrogate for outcome
— Multiple t-testing (without correction for multiple comparisons)
— Filters, e.g., fold regulation, abundance
— Contribution to data variance (e.g., PCA)

PCA = principal component analysis /
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Addressing Dimensiona ity

® Biomarker studies can be viewed as pattern recognition problems
— Goalis usually to find a pattern (one or more features) that when
present/absent, high/low, etc. accurately and robustly predict specific
phenotypes or outcomes (e.g., prognosis, treatment responsiveness)
— Often the pattern is to be identified from within high dimensional data

® Support Vector Machines
— Linear model for classification
— ldentifies the hyperplane that best separates data points
— Largely unaffected by dimensionality
— Canincorporate a recursive feature elimination process to find the
smallest number of features needed to enable good classification

e New approaches continue to emerge
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Study Design‘GoaIs

Need for, and approaches to, addressing heterogeneity and
dimensionality are related to the study goal(s)

e Molecular Profiling (e.g., biomarker discovery)
— question: what genes can define a specific phenotype?
— goal: class prediction (identify class membership of an unknown
sample)
— goal: class discovery (identify new classes)
— Molecular profile may or may not offer mechanistic insight(s)

e Mechanistic Studies (e.g., target discovery for drug discovery/
repurposing)
— question: what actionable genes are responsible for a specific
phenotype?
— goal: gene selection




Summary: Al and Precision
Medicine

Al makes working with complex and high dimensional data tractable,
for example:

e Addressing heterogeneity
— Data deconvolution (supervised or unsupervised) to learn the
prevalence of cell types or different molecular features

e Addressing high dimensionality
— Incorporating dimension independent tools into discovery
workflows, e.g., SVM for classification

e Biomarker discovery (non-mechanistic)
— Learning the most accurate and robust classifier

e Target discovery for drug discovery/repurposing (mechanistic)
— Discovering actionable molecular targets
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You!
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