

PRECISION MEDICINE

Do we need Artificial Intelligence for Precision Medicine?

Prof. Robert Clarke, PhD, DSc

What is Artificial Intelligence (AI)

"Ability of a computer or computer-controlled robot to perform tasks commonly associated with intelligent beings" (*Encyclopedia Britannica*)

In precision medicine: the use of computer algorithms (often using machine learning) and workflows to learn how to predict a future state, e.g., disease risk, outcome, optimal therapy, etc.

Prognostic and Predictive Biomarkers

Predictions: use data at (or up to) one point in time to estimate the likely state of the system at some future time

- **Biomarkers:** usually identified at the population level and used to predict an individual's disease risk or other outcome (future state) relative to the population
- **Prognostic biomarkers:** personalized prediction of future disease state
- **Predictive biomarkers:** personalized prediction of the intervention(s) that will produce the optimal clinical outcome

Prediction and Precision

Prediction: estimate (often expressed as a probability and/or summary statistic) of the future risk of an individual developing a disease, a specific clinical outcome for a patient (e.g., within a specified period of time), the optimal intervention for a patient, a molecular target for therapy, etc.

Precision: degree of sensitivity (true positives) and specificity (true negatives) of a prediction algorithm

Data Sources for Precision Medicine

- Case history, disease status, etc.
- Specimen histopathology
- Validated individual biomarkers, e.g., HER2 (breast cancer)
- Validated complex biomarkers, e.g., PAM50 (breast cancer)
- Omics data for biomarker discovery/validation and target discovery for drug discovery/repurposing
 - Often genome, transcriptome, proteome data from patient samples

Data Sources: Heterogeneity

Intra-tumoral Heterogeneity

Patient Data Heterogeneity

- Age
- Socio-economics
- Race/ethnicity
- Comorbidities
- Treatment(s)
- •Etc.

Data Sources: Heterogeneity

Core needle

Sampling Bias

Sampling bias can affect the representation of tissue features

- •Genetic or epigenetic heterogeneity (e.g., mutations, DNA methylation)
- •Molecular heterogeneity (e.g., proteins, metabolites)
- •Cellular heterogeneity (e.g., stromal, tumor, immune cells)
- Drug and nutrient perfusion heterogeneity
- Drug response heterogeneity

Addressing Heterogeneity

Data deconvolution (e.g., genetic, molecular, cellular heterogeneity)

- Supervised tools (several)
 - Deconvolution is supervised by external data
 - Knowledge of the number of cell types present, e.g., histopathology
 - Data for adequate supervision is often unavailable
- Unsupervised tools (few)
 - Deconvolution is done without reference to any external data
 - Required where data for algorithm supervision is unavailable
- Alternative: tissue microdissection and single cell sequencing
 - Currently limited transcriptome coverage (misses 50-75% of the transcriptome)
 - Lower coverage for the proteome and metabolome
 - Sampling bias (how many single cells capture the heterogeneity)

Data Properties: Dimensionality

Epidemiology

- 10,000 subjects
- Questionnaire with 100 questions
- 100-dimensional data with 10,000 samples

Transcriptome Assay

- 10,000 mRNAs in single cell RNAseq study
- 100 specimens
- 10,000-dimensional data with 100 samples

How well do we sample what's really present?

- ~30,000 genes
- ~50,000 RNA transcripts (all types)
- perhaps 80,000-400,000 different proteins
- >110,00 metabolites (HMDB 4.0)
- Likely many protein-protein, protein-metabolite, protein-DNA, and protein-RNA connections

Data Properties: Dimensionality

- Concentration of measure
 - Data are not evenly distributed in high dimensional data spaces
- Curse of dimensionality
 - Large search radius, number of calculations increase exponentially with dimensionality, algorithms allocate resources to irrelevant data regions, algorithms may converge on local solutions that are globally incorrect
- Multimodality (in biological systems)
 - More than one process, pathway, or phenotype is present
 - A signaling feature (e.g., gene, signaling module) may affect more than one component of a complex phenotype
- Confound of multimodality (complex phenotype)
 - Which component(s) of the profile uniquely define the phenotype of interest (e.g., biomarker study)
 - Which omics feature(s) truly reflect which phenotype component (e.g., mechanistic study to find new drug target)

Addressing Dimensionality

- Visualization
 - Examine all data by multidimensional scaling (e.g., PCA)
 - Validate retention of data structure after dimension reduction
- Reduce dimensionality to
 - Eliminate redundancy or uninformative data
 - Reduce noise
 - Ease the curse of dimensionality
 - Improve algorithm performance
- Reduce dimensionality by
 - Removing features (e.g., genes) lacking variable expression
 - Removing features not associated with a surrogate for outcome
 - Multiple t-testing (without correction for multiple comparisons)
 - Filters, e.g., fold regulation, abundance
 - Contribution to data variance (e.g., PCA)

PCA = principal component analysis

Addressing Dimensionality

- Biomarker studies can be viewed as pattern recognition problems
 - Goal is usually to find a pattern (one or more features) that when present/absent, high/low, etc. accurately and robustly predict specific phenotypes or outcomes (e.g., prognosis, treatment responsiveness)
 - Often the pattern is to be identified from within high dimensional data
- Support Vector Machines
 - Linear model for classification
 - Identifies the hyperplane that best separates data points
 - Largely unaffected by dimensionality
 - Can incorporate a recursive feature elimination process to find the smallest number of features needed to enable good classification
- New approaches continue to emerge

Study Design Goals

Need for, and approaches to, addressing heterogeneity and dimensionality are related to the study goal(s)

- Molecular Profiling (e.g., biomarker discovery)
 - question: what genes can define a specific phenotype?
 - goal: class prediction (identify class membership of an unknown sample)
 - goal: class discovery (identify new classes)
 - Molecular profile may or may not offer mechanistic insight(s)
- Mechanistic Studies (e.g., target discovery for drug discovery/ repurposing)
 - question: what actionable genes are responsible for a specific phenotype?
 - goal: gene selection

Summary: Al and Precision Medicine

AI makes working with complex and high dimensional data tractable, for example:

- Addressing heterogeneity
 - Data deconvolution (supervised or unsupervised) to learn the prevalence of cell types or different molecular features
- Addressing high dimensionality
 - Incorporating dimension independent tools into discovery workflows, e.g., SVM for classification
- Biomarker discovery (non-mechanistic)
 - Learning the most accurate and robust classifier
- Target discovery for drug discovery/repurposing (mechanistic)
 - Discovering actionable molecular targets

Thank You!

THE HORMEL INSTITUTE UNIVERSITY OF MINNESOTA

